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Abstract. We propose a convex optimization approach to solving the nonparametric regression estimation prob-
lem when the underlying regression function is Lipschitz continuous. This approach is based on the minimization
of the sum of empirical squared errors, subject to the constraints implied by Lipschitz continuity. The resulting
optimization problem has a convex objective function and linear constraints, and as a result, is efficiently solvable.
The estimated function computed by this technique, is proven to converge to the underlying regression function
uniformly and almost surely, when the sample size grows to infinity, thus providing a very strong form of con-
sistency. We also propose a convex optimization approach to the maximum likelihood estimation of unknown
parameters in statistical models, where the parameters depend continuously on some observable input variables.
For a number of classical distributional forms, the objective function in the underlying optimization problem is
convex and the constraints are linear. These problems are, therefore, also efficiently solvable.
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1. Introduction

Nonlinear regression is the process of building a model of the form

Y = f (X)+ ψ, (1)

whereX,Y are observable random variables andψ is a zero-mean non-observable random
variable. Thus,E[Y | X]= f (X). The main problem of nonlinear regression analysis is to
estimate the functionf based on a sequence of observations(X1,Y1), . . . , (Xn,Yn). In one
particular instance, we may think of variableXi as the timeti at which we observedYi .
That is, at timest1< t2< · · ·< tn, we observeY1,Y2, . . . ,Yn and the problem is to compute
the time-varying mean valueE[Y(t)] of Y, as a function of timet , on the interval [t1, tn].
However, this paper also considers the case where the dimension ofX is larger than one.
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There are two mainstream approaches to the problem. The first is parametric estima-
tion, where some specific form of the functionf is assumed (for example,f is a poly-
nomial) and unknown parameters (for example, the coefficients of the polynomial) are
estimated.

The second approach is nonparametric regression. This approach usually assumes only
qualitative properties of the functionf , like differentiability or square integrability. Among
the various nonparametric regression techniques, the two best known and most under-
stood are kernel regression and smoothing splines (see Eubank (1988) for a systematic
treatment).

Consistency (convergence of the estimate to the true functionf as the sample size goes
to infinity) is known to hold for both of these techniques. Also, for the case of a one-
dimensional input vectorX, the decay rates of the magnitudes of expected errors are known
to be of orderO( 1

n2/3 ) for kernel regression andO( 1
nm/m+1 ) for smoothing splines, werem

stands for the number of continuous derivatives existing for the functionf .
In this paper, we show how convex optimization techniques can be used in nonparametric

regression, when the underlying function to be estimated is Lipschitz continuous. The
idea is to minimize the sum of the empirical squared errors subject to constraints implied
by Lipschitz continuity. This method is, therefore, very close in spirit to the smoothing
splines approach, which is built on minimizing the sum of squared errors and penalizing
large magnitude of second or higher order derivatives. But, unlike smoothing splines, our
technique does not require differentiability of the regression function and, on the other
hand, enforces the Lipschitz continuity constraint, so that the resulting approximation is a
Lipschitz continuous function.

The contributions of the paper are summarized as follows:

1. We propose a convex optimization approach to the nonlinear regression problem. Given
an observed sequence of inputsX1, X2, . . . , Xn, and outputsY1,Y2, . . . ,Yn, we compute
a Lipschitz continuous estimated functionf̂ n≡ f̂ (·; X1,Y1, . . . , Xn,Yn)with a specified
Lipschitz constantK. Thus, our method is expected to work well when the underlying
regression functionf is itself Lipschitz continuous and the constant can be guessed
within a reasonable range (see simulation results in Section 5 and Theorem 2 in Section 6).

2. In Section 3, we outline the convex optimization approach to the maximum likelihood
estimation of unknown parameters in dynamic statistical models. It is a modification of
the classical maximum likelihood approach, but to models with parameters depending
continuously on some observable input variables.

3. Our main theoretical results are contained in Section 6. For the case of bounded random
variablesX andY, we establish a very strong mode of convergence of the estimated
function f̂ n to the true functionf , wheren is the sample size. In particular, we show that
f̂ n converges tof uniformly and almost surely, asn goes to infinity. We also establish
that the tail of the distribution of the uniform distance‖ f̂ n− f ‖∞ decays exponentially
fast. Similar results exist for kernel regression estimation (Devroye, 1978), but do not
exist, to the best of our knowledge, for smoothing splines estimators.

Uniform convergence coupled with the exponential bound on the tail of the distribution
of ‖ f̂ n− f ‖∞ enables us, in principle, to build confidence intervals aroundf̂ n. However,
the constants in our estimates of the tail probabilities are too large to be practically useful.
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2. A nonlinear regression model

In this section, we demonstrate how convex optimization algorithms can be used for non-
linear regression analysis. LetX be a random vector taking values in a setX ⊂<m, and let
Y be a random variable taking values in a setY ⊂<. We are given a model (1) in which
the function f :X 7→Y is Lipschitz continuous with some unknown parameterK . Namely,
| f (x1)− f (x2)| ≤ K‖x1− x2‖∞ for all x1, x2∈X . Throughout the paper,‖ · ‖∞ is used to
denote the maximum norm on<m. That is,‖x‖∞ = maxi |xi |, for all x ∈<d. The objective
is to find an estimatêf of the true functionf based on the sequence of noisy observations.
We consider a model of the form(X1,Y1), (X2,Y2), . . . , (Xn,Yn):

Yi = f (Xi )+ ψi , i = 1, 2, . . . ,n.

We assume that the random variablesψ1, . . . , ψn, conditioned onX1, . . . , Xn, have zero
mean and are mutually independent. We propose the following two-step algorithm:

Regression algorithm

Step 1.Choose a constantK and solve the following constrained optimization problem in
the variablesf̂ 1, . . . , f̂ n:

minimize
n∑

i=1

(Yi − f̂ i )
2

subject to | f̂ i − f̂ j | ≤ K‖Xi − X‖∞, i, j = 1, 2, . . . ,n.

(2)

This step gives the prediction of the outputf̂ i ≡ f̂ (Xi ), i = 1, 2, . . . ,n, at the inputs
X1, X2, . . . , Xn.

Step 2.In this step, we extrapolate the valuesf̂ 1, . . . , f̂ n obtained in Step 1, to a Lipschitz
continuous functionf̂ :X 7→< with the constantK , as follows: for anyx ∈X , let

f̂ (x) = max
1≤i≤n
{ f̂ i − K‖x − Xi ‖∞}.

The following proposition justifies Step 2 of the above algorithm.

Proposition 1. The function f̂ defined above is a Lipschitz continuous function with
Lipschitz constant K . It satisfies

f̂ (Xi ) = f̂ i , i = 1, 2, . . . ,n.

Proof: Let x1, x2∈X . Let i = argmax1≤ j≤n{ f̂ j − K‖x1 − X j ‖∞}, i.e., f̂ (x1)= f̂ i −
K‖x1 − Xi ‖∞. Moreover, by the definition off̂ (x2), f̂ (x2) ≥ f̂ i − K‖x2− Xi ‖∞.
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Therefore,

f̂ (x1)− f̂ (x2) ≤ f̂ i − K‖x1− Xi ‖∞ − ( f̂ i − K‖x2− Xi ‖)∞
= K‖x2− Xi ‖∞ − K‖x1− Xi ‖∞
≤ K‖x2− x1‖∞.

By a symmetric argument, we obtain

f̂ (x2)− f̂ (x1) ≤ K‖x2− x1‖∞.

For x= Xi , we have f̂ i − K‖x − Xi ‖∞ = f̂ i . For all j 6= i , constraint (2) guarantees that
f̂ j − K‖x − X j ‖∞ ≤ f̂ i . It follows that f̂ (Xi ) = f̂ i . 2

In Step 2, we could take instead

f̂ (x) = min
1≤i≤n
{ f̂ i + K‖x − Xi ‖∞},

or

f̂ (x) = 1

2
max
1≤i≤n
{ f̂ i − K‖x − Xi ‖∞} + 1

2
min

1≤i≤n
{ f̂ i + K‖x − Xi ‖∞}.

Proposition 1 holds for both of these constructions.
Interesting special cases of model (1) include dynamic models. Suppose thatX1, . . . , Xn

are times at which measurementsY1, . . . ,Yn were observed. That is, at timest1< t2< · · ·
< tn, we observeY1, . . . ,Yn. To estimate the time-varying expectation of the random variable
Y within the time interval [t1, tn], we modify the two steps of the regression algorithm as
follows:

Step 1′. Solve the following optimization problem in the variablesf̂ 1, . . . , f̂ n:

minimize
n∑

i=1

(Yi − f̂ i )
2

subject to | f̂ i+1− f̂ i | ≤ K (ti+1− ti ), i = 1, 2, . . . ,n− 1.

(3)

(4)

Step 2′. The extrapolation step can be performed in the following way. For anyt , with
ti ≤ t < ti+1, let

µ = t − ti
ti+1− ti

,

and set

f̂ (t) = (1− µ) f̂ (ti )+ µ f̂ (ti+1).
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It is easy to see that the resulting functionf̂ defined on the interval [t1, tn] is Lipschitz
continuous with constantK.

Remarks.

1. The proposed algorithm relies on the minimization of the sum of the empirical squared
errors between the estimated function valuef̂ i at point Xi and the observationYi , in
such a way that the estimatesf̂ 1, . . . , f̂ n satisfy the Lipschitz continuity condition.

2. The choice of the constantK is an important part of the setup. It turns out that for a
successful approximation, it suffices to takeK ≥ K0, whereK0 is the true Lipschitz
constant of the unknown functionf (see Section 6).

3. If the noise termsψ1, . . . , ψn are i.i.d., this approach also yields an estimate of the
variance of the noiseψ :

σ̂ 2 = 1

n− 1

n∑
i=1

(Yi − f̂ i )
2.

4. The optimization problems (2) or (3) are quadratic programming problems, involving a
convex quadratic objective function and linear constraints, and can be efficiently solved
(See Bazaara, Sherali, and Shetti, 1993). In fact, interior point methods can find optimal
solutions in polynomial time.

5. SettingK = 0, yields the sample average:

f̂1 = · · · = f̂ n = 1

n

n∑
i=1

Yi .

6. If the noise termsψ1, . . . , ψn are zero, then the estimated functionf̂ coincides with the
true function f at the observed input values:

f̂ i = f (Xi ), i = 1, 2, . . . ,n.

This compares favorably with the kernel regression and smoothing spline techniques,
where due to the selected positive bandwidth or positive regularization parameter re-
spectively, the estimated function is not equal to the true function even if the noise is
zero. Thus, our method is more robust with respect to small noise levels.

It is clear that we cannot expect the pointwise unbiasedness conditionE[ f̂ (x)]= f (x) to
hold universally for allx ∈X . However, the estimator produced by our method is unbiased
in anaveragesense as the following theorem shows.

Theorem 1. Let the estimateŝf i be obtained from the sample(X1,Y1), . . . , (Xn,Yn),

according to Step1 of the regression algorithm. Then,

E

[
1

n

n∑
i=1

f̂ i | X1, . . . , Xn

]
= 1

n

n∑
i=1

f (Xi ).
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Proof: Let the estimateŝf1, . . . , f̂ n be obtained using Step 1 of the Regression Algorithm.
Observe that the estimateŝf i + c, i = 1, 2, . . . ,n, also satisfy the constraints in (2), for
anyc∈<. Since the first set of estimates is optimal, we must have

n∑
i=1

(Yi − f̂ i )
2 ≤

n∑
i=1

(Yi − f̂ i − c)2, ∀ c ∈ <.

Taking the derivative of the right-hand side with respect toc, and setting it to zero atc = 0,
we obtain

n∑
i=1

(Yi − f̂ i ) = 0,

or

1

n

n∑
i=1

f̂ i =
1

n

n∑
i=1

Yi .

It follows that

E

[
1

n

n∑
i=1

f̂ i | X1, . . . , Xn

]
= E

[
1

n

n∑
i=1

Yi | X1, . . . , Xn

]
= 1

n

n∑
i=1

f (Xi ),

where the last step follows from the zero mean property of the random variablesψi . 2

3. A general dynamic statistical model

We now propose a convex optimization approach for maximum likelihood estimation of
parameters that depend on some observable input variable.

We consider a sequence of pairs of random variables(X1,Y1), . . . , (Xn,Yn). Suppose
that the random variablesYi , i = 1, 2, . . . ,n, are distributed according to someknownprob-
ability density functionφ(·), which depends on some parameterλ. This parameter isun-
knownand is a Lipschitz continuous functionλ :X 7→< (with unknown constantK0) of
the input variableX.

More precisely, conditioned onXi , the random variableYi has a probability density func-
tionφ(λ(Xi ),Yi ), i = 1, 2, . . . ,n, whereφ(·) is a known function, andλ(·) is unknown. The
objective is to estimate the true parameter functionλ based on the sequence of observations
(X1,Y1), . . . , (Xn,Yn). As a solution we propose the following algorithm.

Dynamic maximum likelihood estimation (DMLE) algorithm

Step 1.Solve the following optimization problem in the variablesλ̂1, . . . , λ̂n:

maximize
n∏

i=1

φ(λ̂i ,Yi )

subject to |λ̂i − λ̂ j | ≤ K‖Xi − X j‖∞, i = 1, 2, . . . ,n.

(5)
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Step 2.To get an estimatêλ of the functionλ, repeat Step 2 of the regression algorithm,
that is, extrapolate the valuesλ̂1, . . . , λ̂n at X1, . . . , Xn to obtain a Lipschitz continuous
function λ̂ with constantK . Then, given a random observable inputX, the estimated
probability density function ofY given X is φ(λ̂(X), y).

Remarks.

1. This algorithm tries to maximize the likelihood function, in which instead of a single
parameterλ, there is a set of parametersλ1, . . . , λn which depend continuously on the
input variableX. Namely, this approach finds the maximum likelihood sequence of
parameters within the class of parameter sequences satisfying the Lipschitz continuity
condition with constantK .

2. Whether the nonlinear programming problem (5) can be solved efficiently or not depends
on the structure of the density functionφ.

As before, one interesting special case is a time-varying statistical model, where the variables
X1, . . . , Xn stand for the times at which the outputsY1, . . . ,Yn were observed.

4. Examples

In this section, we apply our DMLE algorithm to several concrete examples and show how
Step 1 can be carried out. We do not discuss Step 2 in this section since it is always the
same.

4.1. Gaussian random variables with unknown mean and constant standard deviation

Suppose that the random valuesY1, . . . ,Yn are normally distributed with a constant stan-
dard deviationσ andunknownsequence of meansµ(X1), . . . , µ(Xn). We assume that the
functionµ(x) is Lipschitz continuous withunknownconstantK0. Using the maximum like-
lihood approach (5), we estimate the functionµ by guessing some constantK and solving
the following optimization problem in the variablesµ̂1, . . . , µ̂n:

maximize
n∏

i=1

1√
2πσ

exp

(
− (Yi − µ̂i )

2

2σ 2

)
subject to |µ̂i − µ̂j | ≤ K‖Xi − X j ‖∞, i, j = 1, 2, . . . ,n.

By taking the logarithm of the likelihood function, the problem is equivalent to

minimize
n∑

i=1

(Yi − µ̂i )
2

subject to |µ̂i − µ̂ j | ≤ K‖Xi − X j ‖∞, i, j = 1, 2, . . . ,n.
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We recognize this problem as the one described in Section 2. There is a clear analogy with
the classical statistical result: given the linear regression modelY = bX+ ε with unknown
b and a sequence of observations(X1,Y1), . . . , (Xn,Yn), the least-squares estimateb̂ is
also a maximum likelihood estimate, ifY conditioned onX is normally distributed.

4.2. Gaussian random variables with unknown mean and unknown standard deviation

Consider a sequence of normally distributed random variablesY1, . . . ,Yn with unknown
meansµ1 ≡ µ(X1), . . . , µn ≡ µ(Xn) andunknownstandard deviationsσ1≡ σ(X1), . . . ,

σn≡ σ(Xn). We assume thatµ(x) andσ(x) are Lipschitz continuous withunknowncon-
stantsK 1

0, K 2
0. Using the maximum likelihood approach (5), we estimate the mean function

µ and the standard deviation functionσ by guessing constantsK1, K2 and by solving the
following optimization problem in the variableŝµ1, . . . , µ̂n, σ̂1, . . . , σ̂n:

maximize
n∏

i=1

1√
2πσ̂i

exp

(
− (Yi − µ̂i )

2

2σ̂ 2
i

)

subject to |µ̂i − µ̂ j | ≤ K1‖Xi − X j ‖∞, i, j = 1, 2, . . . ,n,

|σ̂i − σ̂ j | ≤ K2‖Xi − X j ‖∞, i, j = 1, 2, . . . ,n.

By taking the logarithm of the likelihood function, the above nonlinear programming prob-
lem is equivalent to

minimize
n∑

i=1

log(σ̂i )+
n∑

i=1

(Yi − µ̂i )
2

2σ̂ 2
i

subject to |µ̂i − µ̂ j | ≤ K1‖Xi − X j ‖∞, i, j = 1, 2, . . . ,n,

|σ̂i − σ̂ j | ≤ K2‖Xi − X j ‖∞, i, j = 1, 2, . . . ,n.

Note that here the objective function is not convex.

4.3. Bernoulli random variables

Suppose that we observe a sequence of binary random variablesY1, . . . ,Yn. Assume that
p(Xi )≡Pr(Yi = 1 | Xi ) depends continuously on some observable variableXi . In particu-
lar, the functionp :X 7→ [0, 1] is Lipschitz continuous, withunknownconstantK0. Using
the maximum likelihood approach (5), we may construct an estimated functionp̂ based on
observations(X1,Y1), . . . , (Xn,Yn), by solving the following optimization problem in the
variablesp̂1, . . . , p̂n:

maximize
n∏

i=1

p̂Yi
i (1− p̂i )

1−Yi

subject to | p̂i − p̂j | ≤ K‖Xi − X j ‖∞, i, j = 1, 2, . . . ,n.
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By taking the logarithm, this nonlinear programming problem is equivalent to

maximize
n∑

i=1

Yi log( p̂i )+
n∑

i=1

(1− Yi ) log(1− p̂i )

subject to | p̂i − p̂j | ≤ K‖Xi − X j‖∞, i, j = 1, 2, . . . ,n.

Note that the objective function is concave, and therefore the above nonlinear programming
problem is efficiently solvable.

4.4. Exponentially distributed random variables

Suppose that we observe a sequence of random valuesY1, . . . ,Yn. We assume thatYi is
exponentially distributed with rateλi = λ(Xi ), andλ(X) is a Lipschitz continuous function
of the observed input variableX, with unknownLipschitz constantK0. Using the maximum
likelihood approach (5), we may construct an estimated functionλ̂ based on observations
(X1,Y1), . . . , (Xn,Yn), by solving the following optimization problem in the variables
λ1, . . . , λ̂n:

maximize
n∏

i=1

λ̂i exp(− λ̂i Yi )

subject to | λ̂i − λ̂ j | ≤ K‖Xi − X j ‖∞, i, j = 1, 2, . . . ,n.

Again by taking the logarithm, this is equivalent to

maximize
n∑

i=1

log λ̂i −
n∑

i=1

λ̂i Yi

subject to | λ̂i − λ̂ j | ≤ K‖Xi − X j ‖∞, i, j = 1, 2, . . . ,n.

This nonlinear programming problem is also efficiently solvable, since the objective is
concave.

5. Simulation results

In this section, we provide some simulation results involving the Regression Algorithm from
Section 2. We also compare its performance with kernel regression, on the same samples
of artificially generated data.

Let us consider a particular case of the model from Section 2, namely

Y = sinX + ψ,

where 0≤ X ≤ 2π and the noise termψ is normally distributed asN(0, σ 2). We divide the
interval [0, 2π ] into n−1 equal intervals and letXi = 2π(i −1)/(n−1), i = 1, . . . ,n, be
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the endpoints of the latter intervals. We generaten independent noise termsψ1, ψ2, . . . , ψn,
with normalN(0, σ 2)distribution and letYi = sinXi +ψi . We run Step 1 of the Regression
Algorithm based on the paris(Xi ,Yi ), i = 1, 2 . . . ,n, and obtain the estimateŝf 1, . . . , f̂ n.
We also compute kernel regression estimates of the function sinx, x ∈ [0, 2π ] using the
same samples(Xi ,Yi ). For the estimated functionŝf obtained by either the Regression
Algorithm or kernel regression, we consider the performance measures

d∞ ≡ max
1≤i≤n

| f̂ (Xi )− sinXi |

and

d2 ≡
(

1

n

n∑
i=1

( f̂ (Xi )− sinXi )
2

)1/2

.

The first performance measure approximates the uniform (maximal) distance max0≤x≤2π

| f̂ (x)− sinx| between the regression function sinx and its estimatef̂ . In Section 6
we will present some theoretical results on the distribution of the distance max0≤x≤2π

| f̂ (x)− f (x)| for any Lipschitz continuous functionf (x). The second performance mea-
sure approximates the distance between sinx and f̂ (x) with respect to theL2 norm.

In figure 1, we have plotted the results of running the Regression Algorithm on a data
sample generated using the model above. The sample size used isn = 100, and the standard
deviation of the noise isσ = .5. A Lipschitz constantK = 2 is used for this experiment. The
piecewise linear curve around the curve sin(x) is the resulting estimated function̂f . The
points indicated by stars are the actual observations(Xi ,Yi ), i = 1, 2, . . . ,100. We see that

Figure 1. Experimental results with the Regression Algorithm, withn = 100, σ = 0.5 andK = 1.
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Table 1. Experimental results with respect to the performance measured∞.

Regression algorithm Kernel regression
n= 100
σ K = 1 K = 2 δ= .3 δ= .1

0.5 0.2861 0.2617 0.2340 0.4762

0.1 0.1100 0.1438 0.1566 0.1061

0.05 0.0766 0.0810 0.1411 0.0773

0.01 0.0200 0.0273 0.1525 0.0682

0.001 0.0026 0.0025 0.1475 0.0618

Table 2. Experimental results with respect to the performance measured2.

Regression algorithm Kernel regression
n= 100
σ K = 1 K = 2 δ= .3 δ= .1

0.5 0.1299 0.2105 0.1157 0.1868

0.1 0.0515 0.0688 0.0618 0.0569

0.05 0.0272 0.0433 0.0574 0.0519

0.01 0.0093 0.0101 0.0575 0.0575

0.001 0.0008 0.0010 0.0566 0.0567

the algorithm is successful in obtaining a fairly accurate approximation of the function
sinx.

In Tables 1 and 2, we summarize the results of several experiments, for the performance
measuresd∞ andd2, respectively. In all cases, the sample size isn = 100. Each row
corresponds to a different standard deviationσ used for the experiment. The second and the
third columns list the values of the performanced obtained by the Regression Algorithm
using Lipschitz constantsK = 1 andK = 2. Note, that the function sinx has Lipschitz
constantK0= 1. That is,K0= 1 is the smallest valueK , for which |sin(x) − sin(y)| ≤
K |x − y| for all x, y ∈ [0, 2π ]. The last two columns are the results of kernel regression
estimation using the same data samples and bandwidthsδ= 0.3 and δ= 0.1. We use
φ(x, x0) = e−

(x−x0)
2

δ2 as a kernel function.
The metricd∞ is a more conservative measure of accuray than the metricd2. Therefore,

it is not surprising that the approximation errors in Table 2 are larger. Examining the
performance of the Regression Algorithm for the choicesK = 1 andK = 2, we see that it
is not particularly sensitive to the choice ofK . The values obtained withK = 1 andK = 2
are quite close to each other. The dependence of the error onK is further demonstrated in
figure 2. We have computed the errors for samples of sizen= 50 and constantK ranging
from 0 to 10. Note that the optimal value is somewhat smaller than the correct oneK0= 1,
suggesting that it pays to somewhat underestimate the constant for the benefit of fewer
degrees of freedom. Note that for largeK we essentially overfit the data. Also the case
K = 0 corresponds simply to a sample average.
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Figure 2. Approximation error as a function ofK , with respect to the metricd2.

It seems that for each choice of the bandwidthδ, there are certain values ofσ for which
the performance of the two algorithms is the same, or the performance of kernel regression
is slightly better (σ = 0.5 for δ= 0.3; σ = 0.1 or σ = 0.05 for δ= 0.1). However, as the
noise levelσ becomes smaller, we see that the Regression Algorithm outperforms kernel
regression. This is consistent with Remark 6 in Section 2: the Regression Algorithm is
more robust with respect to small noise levels.

Finally, we have investigated the dependence of the errord2 on the sample sizen. The
results are reported in figure 3. For everyn between 10 and 100, we repeat the experiment
40 times, withσ = .5. We take the average squared errord2

2 over these 40 experiments,
and plot its negative logarithm. We also show the graphs of log(n) and log(n2/3) (shifted
vertically, so that initial points coincide).

6. Convergence to the true regression function: Consistency result

In this section, we discuss the consistency of our convex optimization regression algorithm.
Roughly speaking, we show that for the nonlinear regression modelY= f (X)+ψ of
Section 1, the estimated function̂f constructed by the Regression Algorithm, converges
to the true functionf as the number of observations goes to infinity, ifX and Y are
bounded random variables and our constantK is larger than the true constantK0. Note that
the boundedness assumption does not allow for, say, Gaussian noise and does not cover
problems such as the one considered in Example 4.1. For any continuous scalar functiong
defined on the unit cube [0, 1]d, let the norm‖g‖∞ be defined as maxx∈[0,1]d |g(x)|.
Theorem 2. Consider bounded random variables X,Y, with ranges in[0, 1]d and[0, 1],
respectively. Let F(x, y) denote their joint probability distribution function. Suppose that
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Figure 3. Plot of the negative logarithm of the squared errord2
2 as a function of the sample size.

f (x)≡ E[Y | X = x] is a Lipschitz continuous function, with constant K0, and suppose
that the distribution of the random variable X has a density functionφ(x), satisfying
φ(x) ≥ β > 0 for all x ∈ [0, 1]d and someβ > 0.

For any sample of i.i.d. outcomes(X1,Y1), . . . , (Xn,Yn), and a constant K> 0, let
f̂ n ≡ f̂ be the estimated function computed by the Regression Algorithm of Section2. If
K ≥ K0, then:
1. f̂ n converges to f uniformly and almost surely. That is,

lim
n→∞‖ f̂ n − f ‖∞ = 0, w.p.1.

2. For anyε > 0, there exist positive constantsγ1(ε) andγ2(ε) such that

Pr{‖ f̂ n − f ‖∞ > ε} ≤ γ1(ε)e
−γ2(ε)n, ∀ n. (6)

Remarks.

1. Part 2 of the theorem implies that Pr{‖ f̂ n − f ‖∞ > ε} can be made smaller than any
given δ > 0, by choosingn large enough. Explicit estimates forγ1(ε) andγ2(ε) are
readily obtained from the various inequalities established in the course of the proof.
These estimates are too conservative to be practically useful. The estimates also indicate
that the number of required samples increases exponentially with the dimensiond, but
this is unavoidable, even in the absence of noise.

2. Theorem 2 can be easily extended to the case where the range of the input variableX
is some rectangle5d

i=1[al
1,a

l
2], and the range of the output variableY is some interval

[b1, b2]. The extension is obtained by rescaling the input and output variables.
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Proof: Let = be the set of all Lipschitz continuous functionsf̂ : [0, 1]d 7→ [0, 1] with
constantK . We introduce the risk function

Q(x, y, f̂ ) = (y− f̂ (x))2

defined on [0, 1]d+1×=. The estimatêf n obtained from Steps 1 and 2 of the Regression
Algorithm is a solution to the problem

minimize
1

n

n∑
i=1

Q(Xi ,Yi , f̂ ) over f̂ ∈ = (7)

In particular

n∑
i=1

Q(Xi ,Yi , f̂ n) ≤
n∑

i=1

Q(Xi ,Yi , f ). (8)

Note that this is the Empirical Risk Minimization problem (see Vapnik, 1996, p. 18). Notice
also that the true regression functionf is a solution to the minimization problem

minimize
∫

Q(x, y, f̂ ) dF(x, y) over f̂ ∈ =,

because for any fixedx ∈ [0, 1]d, the minimum ofE[(Y − f̂ (x))2 | X = x] is achieved by
f̂ (x) = E[Y | X = x] = f (x).

Our proof of Theorem 2 is built on the concept ofVC entropy(Vapnik, 1996). For any
given set of pairs

(x1, y1), . . . , (xn, yn) ∈ [0, 1]d+1

consider the set of vectors in<n

{(Q(x1, y1, f̂ ), . . . , Q(xn, yn, f̂ )) : f̂ ∈ =} (9)

obtained by varyinĝf over=. Let N(ε,=, (x1, y1), . . . , (xn, yn))be the number of elements
(the cardinality) of a minimalε-net of this set of vectors. That isN(ε,=, (x1, y1), . . . ,

(xn, yn)) is the smallest integerk, for which there existk vectorsq1,q2, . . . ,qk ∈ <n such
that for any vectorq in the set (9),‖q−qj ‖∞ < ε for somej = 1, 2, . . . , k. The following
definition of VC entropy was used by Haussler (1992). 2

Definition 1. For anyε > 0, the VC entropy of= for samples of sizen is defined to be

H=(ε, n) ≡ E[N(ε,=, (X1,Y1), . . . , (Xn,Yn))]

The following theorem was proven by Lee, Bartlett, and Williamson (1996). It improves
on earlier results by Pollard (Theorem 24, p. 25, Pollard (1984)) and Haussler (1992).
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Proposition 2. For everyα > 0, we have

Pr

{
sup
f̂ ∈=

∣∣∣∣∣(1− α)
(∫

Q(x, y, f̂ ) dF(x, y)−
∫

Q(x, y, f ) dF(x, y)

)

−
(

1

n

n∑
i=1

Q(Xi ,Yi , f̂ )− 1

n

n∑
i=1

Q(Xi ,Yi , f )

)∣∣∣∣∣> α2

}
≤ 6H=

(
α2

256
, n

)
e
−3α3n
5248 .

Remark. This bound is readily obtained from Theorem 3 of Lee, Bartlett, and Williamson
(1996), by settingν = νc = α/2.

The key to our analysis is to show that for the class= of Lipschitz continuous functions
with Lipschitz constantK , the right-hand side of the inequality above converges to zero as
the sample sizen goes to infinity. The following proposition achieves this goal by showing
that the VC entropy of= is finite, and admits a bound that does not depend on the sample
sizen.

Proposition 3. For anyε > 0 and any sequence(x1, y1), . . . , (xn, yn) in [0, 1]d+1, there
holds

N(ε,=, (x1, y1), . . . , (xn, yn)) ≤
(

4

ε
+ 1

)
2
(2K )d

εd .

In particular,

H=(ε, n) ≤
(

4

ε
+ 1

)
2
(2K )d

εd

and

log H=(ε, n) = O

((
K

ε

)d)
.

and the bound on the VC entropy does not depend on n.

This result is based on a theorem by Kolmogorov and Tihomirov (1961) on the VC
entropy (ε-covering number) of the space of Lipschitz continuous functions. We provide a
statement of this theorem and a proof of Proposition 3 in the Appendix.

For any functiong ∈ =, its L2-norm‖g‖2 is defined by

‖g‖2 =
(∫

g2(x) dF(x)

)1/2

.

In the following proposition, we obtain a bound on the tail probability of the difference
‖ f̂ n − f ‖2.
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Proposition 4. There holds

Pr{‖ f̂ n − f ‖2 > ε} ≤ 6H=
(
ε2

210
, n

)
e
−3ε3n
41×210 . (10)

for all ε < 1.

Proof: See the Appendix. 2

Combining Propositions 3 and 4, we immediately obtain the following result.

Proposition 5. There holds

Pr{‖ f̂ n − f ‖2 > ε} ≤
(

212

ε2
+ 1

)
2

211d Kd

ε2d e
−3ε3n
41×210 . (11)

for all ε < 1.

Our next step is to show that‖ f̂ n − f ‖∞ → 0 almost surely. The following lemma
establishes that convergence in‖·‖2 norm implies the convergence in‖·‖∞ for the class
= of Lipschitz continuous functions with constantK . This will allow us to prove a result
similar to (11) but with‖ f̂ n − f ‖2 replaced by‖ f̂ n − f ‖∞.

Lemma 1. Consider a Lipschitz continuous function g: [0, 1]d 7→ < with Lipschitz con-
stant K . Suppose that for someε > 0 there holds‖g‖∞ ≥ ε. Then,

‖g‖2 ≥ ε
d
2+1β

1
2

2
d
2+1K

d
2

.

In particular, for a sequence g, g1, . . . , gn, . . . of Lipschitz continuous functions with a
common Lipschitz constant K, ‖gn − g‖2 7→ 0 implies‖gn − g‖∞ 7→ 0.

Proof: Suppose‖g‖∞ ≥ ε. That is, for somea∈ [0, 1]d, we have|g(a)| ≥ ε. Setδ =
ε/(2K ). We have

‖g‖22 ≥
∫

x:‖x−a‖∞≤δ
g2(x) dF(x)

For anyx such that‖x − a‖∞ ≤ δ we have|g(x)− g(a)| ≤ K δ. It follows that|g(x)| ≥
ε − K δ = ε/2, whenever‖x − a‖∞ ≤ δ. In the integral above, we are only integrating
over elements of the unit cube that satisfy‖x − a‖∞ ≤ δ. In the worst case, wherea is
a corner point, we are integrating over a set of volumeδd. Furthermore, the density is at
leastβ. Therefore,

‖g‖22 ≥
ε2

4
Pr

{
‖X − a‖∞ ≤ ε

2K

}
≥ ε

2

4
β

εd

(2K )d
> 0,

and the result follows by taking square roots.
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Lemma 1 implies that

Pr{‖ f̂ n − f ‖∞ > ε} ≤ Pr

{
‖ f̂ n − f ‖2 > ε

d
2+1β

1
2

2
d
2+1K

d
2

}
.

A bound for the right-hand side is provided by Proposition 5 and part 2 of the theorem
follows immediately.

We have so far established the convergence of‖ f̂ n− f ‖∞→ 0 in probability. To com-
plete the proof of the theorem, we need to establish almost sure convergence off̂ n to f .
But this is a simple consequence of part 2 and the Borel-Cantelli lemma. 2

The bounds established in the course of the proof provide us with a confidence interval on
the estimatêf n. Given the training sample(X1,Y1), . . . , (Xn,Yn), we construct the estimate
f̂ n = f̂ n(·; X1,Y1, . . . , Xn,Yn). Then given an arbitrary input observationX ∈ [0, 1]d the
probability that the deviation of the estimated outputf̂ n(X) from the true outputf (X) is
more thanε, is readily bounded above. Note, that the bound depends only on the distribution
of X (throughβ) and not on the conditional distribution ofY given X. Unfortunately, the
constantsγ1(ε) andγ2(ε) are too large for practical purposes, even for dimensiond = 1.
Our simulation results from Section 5 suggest that the rate of convergence off̂ n to f is
much better than predicted by our pessimistic bounds. It would be interesting to investigate
whether better rates and more useful upper bounds can be established.

7. Extensions

As suggested by Theorem 2, the number of samples required to learn a Lipschitz continuous
function can be huge when the input variable is multidimensional. This problem can be
potentially overcome by making additional structural assumptions. For instance, assume
that the input variablex can be represented as a pair of variables(t, z), t ∈ <, z ∈ <d (t could
be time, for example). Assume that the regression function has the formf (t, z) = b(t)′z,
whereb(t) is a Lipschitz continuous vector-valued function of a single variable, with
Lipschitz constantK . Given such a model

Y = f (t, Z)+ ψ

and a sequence of observations(t1, Z1,Y1), . . . , (tn, Zn,Yn) the following version of the
regression algorithm provides an estimate of the underlying regression functionf .

Step 1.Choose a constantK and solve the following constrained optimization problem inn
(d-dimensional) variableŝb1, . . . , b̂n:

minimize
n∑

i=1

(Yi − b̂
′
i Zi )

2

subject to ‖ b̂i − b̂ j ‖∞ ≤ K |ti − t j |, i, j = 1, 2, . . . ,n.

(12)
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Step 2.Let

f̂ (t, Z) =
(

t − ti
ti+1− ti

b̂
′
i +

ti+1− t

ti+1− ti
b̂
′
i+1

)
Z.

for all t ∈ [ti , ti+1].

Thus, in the first step the functionb(t) is estimated at the observed values (times)ti ,
and then the values are extrapolated linearly for any values oft and X. When the value
of the parameterK is small, we can think of this model as a linear regression model in
which the regression vector is slowly varying with time. Note, that from Proposition 3,
each of the coordinate functionsbi (t), i = 1, 2, . . . ,d, has bounded VC entropy, which is
independent from the dimensiond and the sample sizen. Therefore, the logarithm of the
VC entropy of the space of Lipschitz continuous functionsb(t) is O(d). This is better than
Ä(2d), which is known to be a lower bound for the case of general Lipschitz continuous
functions ofd variables.

A good approximation of the Lipschitz constantK is very important for the Regression
Algorithm to be successful. If the input spaceX can be partitioned into, say, two parts
X1,X2, withX1∪X2 = X , such that within each partXr a better estimateKr of the constant
K is available, such knowledge can be incorporated into the model (1) by using a tighter
constraint| f̂ i − f̂ j | ≤ Kr ‖Xi − X j ‖∞, wheneverXi , X j ∈ Xr , r = 1, 2.

We have observed in our simulation studies that the performance of the Regression
Algorithm is comparable to kernel regression, for moderate magnitudes of noise variance.
However, the kernel regression method has the advantage that the convergence rate, when
d = 1, of the expected errorE[( f̂ n − f )2] = ‖ f̂ n − f ‖22 is O(n−2/3), which is the best
possible. We have not proven a similar convergence rate for our Regression Algorithm. The
best bound that can be obtained using the bounds on the tail probability Pr{‖ f̂ n− f ‖22 > ε}, is
O(n−2/5) and does not match the optimum. However, our simulations suggest thatO(n−2/3)

is the right rate for our method as well. It is possible that a mixture of the two approaches
produces a more desirable procedure. Such a mixture can be constructed as follows. Let
φ(x1, x2), x1, x2 ∈ X be the weight function used for kernel regression. Thus, given a
sequence of observations(Xi ,Yi ), i = 1, 2, . . . ,n, kernel regression produces the estimates

f̂ (x) =
∑n

i=1 φ(x, Xi )Yi∑n
i=1 φ(x, Xi )

.

Note, that the resulting valueŝf (Xi ) can be viewed as solutions to the problem of mini-
mizing

n∑
j=1

n∑
i=1

φ(Xi , X j )(Yi − f̂ j )
2

with respect to the variableŝf i . If the underlying function is known to be Lipschitz
continuous, this knowledge can be incorporated in additional constraints of the form

| f̂ i − f̂ j | ≤ K‖Xi − X j ‖∞.
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To what extent this mixed estimation procedure is advantageous over pure kernel regression
or pure quadratic optimization is a subject for future research.

8. Conclusions

We have proposed a convex optimization approach to the nonparametric regression estima-
tion problem. A number of desirable properties were proved for this technique: average
unbiasedness, and a strong form of consistency.

We have also proposed an optimization approach for the maximum likelihood estimation
of dynamically changing parameters in statistical models. For many classical distributional
forms, the objective function in the optimization problem is convex and the constraints
are linear. These problems are therefore efficiently solvable. It would be interesting to
investigate the consistency properties of this estimation procedure. Other questions for
further investigation relate to the bounds on the expected error(E[‖ f̂ n − f ‖22)1/2 and to
methods for setting a value for the constantK . A good choice ofK is crucial for the
approximation to be practically successful.

Appendix

We provide in this appendix the proofs of Propositions 3 and 4.

Proof of Proposition 3: Kolmogorov and Tihomirov (1961, p. 356) proved the following
theorem.

Theorem 3. Let=1 be the space of Lipschitz continuous functions defined on the unit cube
[0, 1]d, bounded by some constant B, and having Lipschitz constant K= 1. Then the size
N(ε,=1) of the minimalε net of=1 satisfies

N(ε,=0) ≤
(

2

⌊
2B

ε

⌋
+ 1

)
2

1
εd .

Consider our set= of Lipschitz continuous functions with range [0, 1]. By dividing all of
these functions byK and subtracting 1/(2K ), we obtain the set of Lipschitz continuous
functions with range [−1/(2K ), 1/(2K )]. Applying Theorem 3, the minimal size of an
(ε/K )-net in this set is no larger than(

2

⌊
2

(2K )
ε
K

⌋
+ 1

)
2

1
( εK )d =

(
2

⌊
1

ε

⌋
+ 1

)
2

Kd

εd .

It follows that the minimal sizeN(ε,=) of theε-net of the set= satisfies

N(ε,=) ≤
(

2

ε
+ 1

)
2

Kd

εd .



244 D. BERTSIMAS, D. GAMARNIK AND J.N. TSITSIKLIS

To complete the proof of Proposition 3, we relate the minimalε-net size of= to the minimal
ε-net sizeN(ε,=, (x1, y1), . . . , (xn, yn)), of the set

{(Q(x1, y1, f ), . . . , Q(xn, yn, f ), f ∈ =)}
= (y1− f (x1))

2, . . . , (yn − f (xn))
2, f ∈ =}. (A.1)

For any two functionsf, g ∈ = and anyi = 1, 2, . . . ,n, we have

|(yi − f (xi ))
2− (yi − g(xi ))

2| = | f (xi )− g(xi )| · |2yi − f (xi )− g(xi )|
≤ 2| f (xi )− g(xi )|.

It follows, that for anyε the minimal sizeN(ε,=, (x1, y1), . . . , (xn, yn)) of anε-net of the
set (A.1) is at most(

4

ε
+ 1

)
2
(2K )d

εd .

This completes the proof. 2

Proof of Proposition 4: The identity∫
Q(x, y, f̂ ) dF(x, y) =

∫
Q(x, y, f ) dF(x, y)+

∫
( f (x)− f̂ (x))2 dF(x, y)

=
∫

Q(x, y, f ) dF(x, y)+ ‖ f̂ − f ‖22 (A.2)

can be easily established for anyf̂ ∈ =, using the facts

(y− f̂ (x))2 = Q(x, y, f )+ 2(y− f (x))( f − f̂ (x))+ ( f (x)− f̂ (x))2

and

E[(Y − f (X))( f (X)− f̂ (X))] = 0,

where the last equality is a consequence ofE[Y | X] = f (X). Then,

Pr

{
sup
f̂ ∈=

∣∣∣∣∣(1− α)
(∫

Q(x, y, f̂ ) dF(x, y)−
∫

Q(x, y, f ) dF(x, y)

)

−
(

1

n

n∑
i=1

Q(Xi ,Yi , f̂ )− 1

n

n∑
i=1

Q(Xi ,Yi , f )

)∣∣∣∣∣ > α2

}

=Pr

{
sup
f̂ ∈=

∣∣∣∣∣(1− α)‖ f̂ − f ‖22

−
(

1

n

n∑
i=1

Q(Xi ,Yi , f̂ )− 1

n

n∑
i=1

Q(Xi ,Yi , f )

)∣∣∣∣∣ > α2

}
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≥Pr

{
(1− α)‖ f̂ n − f ‖22−

(
1

n

n∑
i=1

Q(Xi ,Yi , f̂ n)− 1

n

n∑
i=1

Q(Xi ,Yi , f )

)
> α2

}
≥Pr

{
(1− α)‖ f̂ n − f ‖22 > α2

}
,

where the last inequality follows from (8). For allε < 1, we haveε2 > ε2/(4(1− ε/2)).
Therefore

Pr

{(
1− ε

2

)
‖ f̂ n − f ‖22 >

ε2

4

}
≥ Pr{‖ f̂ n − f ‖2 > ε}. (A.3)

By settingα = ε/2, using (A.2) and (A.3), and applying Proposition 2, we obtain

Pr{‖ f̂ n − f ‖2 > ε} ≤ 6H=
(
ε2

210
, n

)
e
−3ε3n
41×210 .

This completes the proof. 2
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