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Abstract. We propose a convex optimization approach to solving the nonparametric regression estimation prob-
lem when the underlying regression function is Lipschitz continuous. This approach is based on the minimization
of the sum of empirical squared errors, subject to the constraints implied by Lipschitz continuity. The resulting
optimization problem has a convex objective function and linear constraints, and as a result, is efficiently solvable.
The estimated function computed by this technique, is proven to converge to the underlying regression function
uniformly and almost surely, when the sample size grows to infinity, thus providing a very strong form of con-
sistency. We also propose a convex optimization approach to the maximum likelihood estimation of unknown
parameters in statistical models, where the parameters depend continuously on some observable input variables.
For a number of classical distributional forms, the objective function in the underlying optimization problem is
convex and the constraints are linear. These problems are, therefore, also efficiently solvable.
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1. Introduction

Nonlinear regression is the process of building a model of the form
Y=1X)+v, 1)

whereX, Y are observable random variables an@ a zero-mean non-observable random
variable. ThusEg[Y | X] = f(X). The main problem of nonlinear regression analysis is to
estimate the functiori based on a sequence of observatiofs Y1), ..., (Xn, Yn). Inone
particular instance, we may think of variabig as the timeg; at which we observed;.
Thatis, attimes$; <t, <--- <t,, we observéfy, Yo, ..., Y, and the problem is to compute
the time-varying mean valug[Y (t)] of Y, as a function of timé, on the interval s, t,].
However, this paper also considers the case where the dimensioisdérger than one.
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There are two mainstream approaches to the problem. The first is parametric estima-
tion, where some specific form of the functidnis assumed (for exampld, is a poly-
nomial) and unknown parameters (for example, the coefficients of the polynomial) are
estimated.

The second approach is nonparametric regression. This approach usually assumes only
qualitative properties of the functioh, like differentiability or square integrability. Among
the various nonparametric regression technigques, the two best known and most under-
stood are kernel regression and smoothing splines (see Eubank (1988) for a systematic
treatment).

Consistency (convergence of the estimate to the true fundtias the sample size goes
to infinity) is known to hold for both of these techniques. Also, for the case of a one-
dimensional input vectaX, the decay rates of the magnitudes of expected errors are known
to be of orderO(nTl/g) for kernel regression an@(nrlmﬂ) for smoothing splines, wena
stands for the number of continuous derivatives existing for the fundtion

In this paper, we show how convex optimization techniques can be used in nonparametric
regression, when the underlying function to be estimated is Lipschitz continuous. The
idea is to minimize the sum of the empirical squared errors subject to constraints implied
by Lipschitz continuity. This method is, therefore, very close in spirit to the smoothing
splines approach, which is built on minimizing the sum of squared errors and penalizing
large magnitude of second or higher order derivatives. But, unlike smoothing splines, our
technique does not require differentiability of the regression function and, on the other
hand, enforces the Lipschitz continuity constraint, so that the resulting approximation is a
Lipschitz continuous function.

The contributions of the paper are summarized as follows:

1. We propose a convex optimization approach to the nonlinear regression problem. Given
an observed sequence of inpMts Xo, ..., X,, and output¥y, Ys, ..., Y, we compute
a Lipschitz continuous estimated functibh= f(-; X1, Y1, ..., Xn, Yn) with a specified
Lipschitz constanK. Thus, our method is expected to work well when the underlying
regression functiorf is itself Lipschitz continuous and the constant can be guessed
within areasonable range (see simulation results in Section 5 and Theorem 2in Section 6).

2. In Section 3, we outline the convex optimization approach to the maximum likelihood
estimation of unknown parameters in dynamic statistical models. Itis a modification of
the classical maximum likelihood approach, but to models with parameters depending
continuously on some observable input variables.

3. Our main theoretical results are contained in Section 6. For the case of bounded random
variablesX andY, we establish a very strong mode of convergence of the estimated
function f" to the true functiorf , wheren is the sample size. In particular, we show that
fn converges tof uniformly and almost surejyasn goes to infinity. We also establish
that the tail of the distribution of the uniform distant€ — f || decays exponentially
fast. Similar results exist for kernel regression estimation (Devroye, 1978), but do not
exist, to the best of our knowledge, for smoothing splines estimators.

Uniform convergence coupled with the exponential bound on the tail of the distribution
of | f" — || enablesus, in principle, to build confidence intervals ardihdHowever,
the constants in our estimates of the tail probabilities are too large to be practically useful.
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2. A nonlinear regression model

In this section, we demonstrate how convex optimization algorithms can be used for non-
linear regression analysis. L¥tbe a random vector taking values in a&et %™, and let

Y be a random variable taking values in a et 9. We are given a model (1) in which

the functionf : X — Y is Lipschitz continuous with some unknown paraméteNamely,

| f(x1) — f(X2)| < K|IX1 — X2|loo fOr all X1, xo € X. Throughout the papel, ||« is used to
denote the maximum norm o, That s, |||l = max|x |, for all x e 9. The objective

is to find an estimatéd of the true functionf based on the sequence of noisy observations.
We consider a model of the forXy, Y1), (X2, Y2), ..., (Xn, Yn):

Y=fX)+¢i, i=12...,n
We assume that the random variabies . . ., ¥, conditioned onXq, ..., X,, have zero

mean and are mutually independent. We propose the following two-step algorithm:

Regression algorithm

Step 1.Choose a constamt and solve the following constrained optimization problem in
the variablesf 4, ..., f,:

¥ — f)?
= ' @
subjectto |f — f;| < KIIXi = Xllw, i,j=12....1.

n
minimize
i7

This step gives the prediction of the outpﬁtz f(Xi),i =1,2,...,n, at the inputs
X1, X2, ..oy Xp.

Step 2.In this step, we extrapolate the valubsg ..., f, obtained in Step 1, to a Lipschitz
continuous functionf : X — 9 with the constanK, as follows: for any € X', let

f00 = max(f; — Kix = Xill}-

The following proposition justifies Step 2 of the above algorithm.

Proposition 1. The functionf defined above is a Lipschitz continuous function with
Lipschitz constant K. It satisfies

fxy=1f, i=12...,n

Proof: Let x;, xp€ X. Leti =argmax_; . {f; — Klxs — Xjllo}, i€, fx=f; —
KlIxas — Xilleo- Moreover, by the definition off (x2), f(x2) > f; —K|Ix2— Xi|lco-
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Therefore,

fox) = fx) < fi = Kixe = Xilloo — (f; = KlIX2 = Xi Do
= K% — Xilloo — K[IX1 = Xi [l
K%z — X1l oo-

IA

By a symmetric argument, we obtain
fo) — foa) < Kixe = Xalloo

Forx = X;, we havef, — K|Ix — Xillc = f;. Forallj #i, constraint (2) guarantees that
f; — KlIx = Xjlloo = f;. It follows that f (Xi) = f;. m

In Step 2, we could take instead

foo = min {f; + KlIx — Xilleo},

1<i<n

or

1<i<n

N 1 N i A
f(x) = 5 max{f; — K[IX = Xilloo} + 5 min {f; + K[IX — X[}
2 2 1<i<n

Proposition 1 holds for both of these constructions.

Interesting special cases of model (1) include dynamic models. Suppo3@ that, X,
are times at which measuremeivts. . ., Y, were observed. That is, at timgs<ty < - - -
<t,, weobservey, ..., Y,. Toestimate the time-varying expectation of the random variable
Y within the time interval {j, t,], we modify the two steps of the regression algorithm as
follows:

Step 1 Solve the following optimization problem in the variablég, ..., f,;:
n A~
minimize (Y, — f)?
= ®
subject to |fi+1— ﬂl <K{tiz1—t), i=12,...,n—1

(4)

Step 2 The extrapolation step can be performed in the following way. Fortamjith
t<t<t,let

and set

foy=a—w ) +ufi.
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It is easy to see that the resulting functidndefined on the intervalt{, t,] is Lipschitz
continuous with constari.

Remarks

1.

The proposed algorithm relies on the minimization of the sum of the empirical squared
errors between the estimatgd functiAon valyeat point X; and the observatiol, in
such a way that the estimatés, . .., f,, satisfy the Lipschitz continuity condition.

. The choice of the constakt is an important part of the setup. It turns out that for a

successful approximation, it suffices to take> Ky, whereKj is the true Lipschitz
constant of the unknown functioh (see Section 6).

. If the noise termg)y, ..., ¥, are i.i.d., this approach also yields an estimate of the

variance of the noise¢:

1 n
~A2 § 4 £ 12
o = mi:1(Y| — fl) .

. The optimization problems (2) or (3) are quadratic programming problems, involving a

convex quadratic objective function and linear constraints, and can be efficiently solved
(See Bazaara, Sherali, and Shetti, 1993). In fact, interior point methods can find optimal
solutions in polynomial time.

. SettingK =0, yields the sample average:

. Ifthe noise termg/, ..., ¥, are zero, then the estimated functibroincides with the

true functionf at the observed input values:
f=fX), i=12...,n

This compares favorably with the kernel regression and smoothing spline techniques,
where due to the selected positive bandwidth or positive regularization parameter re-
spectively, the estimated function is not equal to the true function even if the noise is
zero. Thus, our method is more robust with respect to small noise levels.

Itis clear that we cannot expect the pointwise unbiasedness conBitibx)] = f (x) to

hold universally for allk € X'. However, the estimator produced by our method is unbiased
in anaveragesense as the following theorem shows.

Theorem 1. Let the estimatesfi be obtained from the sampl&, Y1), ..., (Xn, Yn),
according to Step of the regression algorithm. Then

1S, 1¢
E[—anxl,...,xn}=—Zf(xi>.
ni= ni=
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Proof: Lettheestimates,, ..., f, be obtained using Step 1 of the Regression Algorithm.
Observe that the estimatds + c,i = 1,2, ..., n, also satisfy the constraints in (2), for
anyc e R. Since the first set of estimates is optimal, we must have

n n
Y- )<Y (i - fi—0? Vvcen
i=1 i=1

Taking the derivative of the right-hand side with respeda, tand setting it to zero at= 0,
we obtain

anm - fy=o0,
i=1

or
n

i =
i=1

Sl
Sl
i =

1
[iN

It follows that

1, 18 1
E|:—Z f. |x1,...,xn} - E|:—ZYi |x1,...,xn] =) (X,
ni= ni= ni=
where the last step follows from the zero mean property of the random varigbles O

3. A general dynamic statistical model

We now propose a convex optimization approach for maximum likelihood estimation of
parameters that depend on some observable input variable.

We consider a sequence of pairs of random variabas Y1), ..., (Xn, Yn). Suppose
thatthe random variabléé,i =1, 2, .. ., n, are distributed according to sorkieownprob-
ability density functionp (-), which depends on some parameterThis parameter isin-
knownand is a Lipschitz continuous function X — R (with unknown constankg) of
the input variableX.

More precisely, conditioned aX;, the random variabl¥ has a probability density func-
tiong (A (X)), Yi),i=1,2,...,n,wherep(-) isaknown function, ana(-) isunknown. The
objective is to estimate the true parameter funciitrased on the sequence of observations
(X1, Y1), ..., (Xn, Yp). As a solution we propose the following algorithm.

Dynamic maximum likelihood estimation (DMLE) algorithm

Step 1.Solve the following optimization problem in the variables .. ., in:

n
maximize ]_[qb(ii,Yi)

i1 %)
subjectto A — 4| < K[IXi = Xjloo, 1 =1,2,...,0.
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Step 2.To get an estimate of the functioni, repeat Step 2 of the regression algorithm,
that is, extrapolate the valugs, ..., iy atXy, ..., X, to obtain a Lipschitz continuous
function A with constantk . Then, given a random observable inpGt the estimated
probability density function o¥ given X is ¢ (A(X), y).

Remarks

1. This algorithm tries to maximize the likelihood function, in which instead of a single
parameten, there is a set of parametexs, . .., A, which depend continuously on the
input variableX. Namely, this approach finds the maximum likelihood sequence of
parameters within the class of parameter sequences satisfying the Lipschitz continuity
condition with constank .

2. Whether the nonlinear programming problem (5) can be solved efficiently or not depends
on the structure of the density functign

As before, one interesting special case is atime-varying statistical model, where the variables
X1, ..., X, stand for the times at which the outpits . .., Y, were observed.

4. Examples

In this section, we apply our DMLE algorithm to several concrete examples and show how
Step 1 can be carried out. We do not discuss Step 2 in this section since it is always the
same.

4.1. Gaussian random variables with unknown mean and constant standard deviation

Suppose that the random valués . . ., Y, are normally distributed with a constant stan-
dard deviatioro andunknownsequence of means(X,), ..., u(X,). We assume that the
functionu (x) is Lipschitz continuous witinknowrconstanK . Using the maximum like-
lihood approach (5), we estimate the functjoiy guessing some constafitand solving

the following optimization problem in the variablés, . .., in:
- o1 Y — ,&i)z)
maximize expl —————
E 2T o p( 202

subjectto | — | < KIXi = Xjllew, 1, ] =12,...,n.

By taking the logarithm of the likelihood function, the problem is equivalent to

n
minimize Z(Yi — ai)?
=1

subjectto | — fj] < KIXi = Xjlleo, 1,j=1,2,...,n.
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We recognize this problem as the one described in Section 2. There is a clear analogy with
the classical statistical result: given the linear regression modeb X + € with unknown

b and a sequence of observatianéi, Y1), ..., (Xn, Yn), the least-squares estimdbds

also a maximum likelihood estimate,Xfconditioned onX is normally distributed.

4.2. Gaussian random variables with unknown mean and unknown standard deviation

Consider a sequence of normally distributed random variajles ., Y, with unknown
meansu; = w(Xq), ..., un = u(X,) andunknownstandard deviations, =0 (X,), ...,

on=0(X,). We assume that (x) ando (x) are Lipschitz continuous withnknowncon-
stantsKO, K2. Using the maximum likelihood approach (5), we estimate the mean function
wu and the standard deviation functienby guessing constants;, K, and by solving the

following optimization problem in the variablgs,, ..., fin, 61, ..., Gn:
1 i — f1i)?
maximize exp| —————
l_[ NeZT p( 257
subjectto | — ij] < KillXi = Xjlle, 1,j=1,2,...,n
16i —0j| < K2l Xi = Xjlloo, 1,J=1,2,...,n

By taking the logarithm of the likelihood function, the above nonlinear programming prob-
lem is equivalent to

minimize Z log(5;) + Z (Y'i')

subjectto |&i — ij] < KallXi — Xj”om Lj=212...,n,
|&i—6j|§K2||Xi—Xj||oo, i,j=1,2,...,n.

Note that here the objective function is not convex.

4.3. Bernoulli random variables

Suppose that we observe a sequence of binary random varigbles, Y,. Assume that
p(Xj) =Pr(Y; = 1| X;) depends continuously on some observable varixbldn particu-
lar, the functionp: X’ — [0, 1] is Lipschitz continuous, withinknownconstantky. Using
the maximum likelihood approach (5), we may construct an estimated funttiased on
observationg X1, Y1), ..., (Xn, Yn), by solving the following optimization problem in the
variablespy, ..., pn:

n
maximize []p" - g
i=1
subjectto |pr — Pyl = KIXi = Xjllos 1] =1.2.....0.
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By taking the logarithm, this nonlinear programming problem is equivalent to

n
maximize

n
Yilog(p) + Y (1 - Yi)log(1— f)
i=1 i=1
subjectto | — Pjl < KIIXi — Xjlee, 1, j=1,2,...,0.

Note that the objective function is concave, and therefore the above nonlinear programming
problem is efficiently solvable.

4.4. Exponentially distributed random variables

Suppose that we observe a sequence of random vayes., Y,. We assume tha; is
exponentially distributed with ratg = A(X;), andA(X) is a Lipschitz continuous function
of the observed input variabl, with unknowrLipschitz constank,. Using the maximum
likelihood approach (5), we may construct an estimated fundtibased on observations
(X1, Y1), ... (Xn, Yn), by solving the following optimization problem in the variables
A, ..y Ans

n
maximize l_[iieXp(—iiYi)
i=1
subjectto A — Aj| < K[IXi = Xjlloo, i,j=21,2,...,0.

Again by taking the logarithm, this is equivalent to
n R n R
maximize log A — Z A,
i=1 i=1
subjectto |4 — Aj| < K[ Xi = Xjlloo, i,j=21,2,...,0.

This nonlinear programming problem is also efficiently solvable, since the objective is
concave.

5. Simulation results

In this section, we provide some simulation results involving the Regression Algorithm from
Section 2. We also compare its performance with kernel regression, on the same samples
of artificially generated data.

Let us consider a particular case of the model from Section 2, namely

Y =sinX + v,

where 0< X < 27 and the noise ternt is normally distributed abl (0, o2). We divide the
interval [0 2] into n — 1 equal intervals and le¢; = 2z (i —1)/(n—1),i =1,...,n, be
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the endpoints of the latter intervals. We generdtalependent noise termig, v, .. ., ¥n,
with normalN (0, o?) distribution and leY; = sin X; + ;. We run Step 1 of the Regression
Algorithm based on the pari&;, Y;),i = 1, 2..., n, and obtain the estimatds, .. ., f,,.
We also compute kernel regression estimates of the function gire [0, 2] using the
same samplegX;, Y;). For the estimated functionf obtained by either the Regression

Algorithm or kernel regression, we consider the performance measures

ds = max | f(Xi) — sinXi|
1<i<n

and

10 1/2
_ - £ N\ i A2
d2=(n;(f(x.) sz.)) )

The first performance measure approximates the uniform (maximal) distangexnax

| f(x) — sinx| between the regression function girand its estimatef. In Section 6
we will present some theoretical results on the distribution of the distance-gax

| f(x) — f(x)| for any Lipschitz continuous functiof(x). The second performance mea-
sure approximates the distance betweensind f (x) with respect to thé., norm.

In figure 1, we have plotted the results of running the Regression Algorithm on a data
sample generated using the model above. The sample size msedli80, and the standard
deviation of the noise is = .5. A Lipschitz constanK = 2 is used for this experiment. The
piecewise linear curve around the curve(ginis the resulting estimated functioh The
points indicated by stars are the actual observaii¥hsy;),i = 1, 2,..., 100. We see that

Output variable Y

Input variable X

Figure L  Experimental results with the Regression Algorithm, witk 100, 0 = 0.5 andK = 1.
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Table 1 Experimental results with respect to the performance mealsgire

Regression algorithm Kernel regression

n=100

o K=1 K=2 §5=.3 §=.1
0.5 0.2861 0.2617 0.2340 0.4762
0.1 0.1100 0.1438 0.1566 0.1061
0.05 0.0766 0.0810 0.1411 0.0773
0.01 0.0200 0.0273 0.1525 0.0682
0.001 0.0026 0.0025 0.1475 0.0618

Table 2 Experimental results with respect to the performance measure

Regression algorithm Kernel regression
n=100
o K=1 K=2 §=.3 §=.1
0.5 0.1299 0.2105 0.1157 0.1868
0.1 0.0515 0.0688 0.0618 0.0569
0.05 0.0272 0.0433 0.0574 0.0519
0.01 0.0093 0.0101 0.0575 0.0575
0.001 0.0008 0.0010 0.0566 0.0567

the algorithm is successful in obtaining a fairly accurate approximation of the function
sinx.

In Tables 1 and 2, we summarize the results of several experiments, for the performance
measuresl,, andd,, respectively. In all cases, the sample size iss 100. Each row
corresponds to a different standard deviatiamsed for the experiment. The second and the
third columns list the values of the performarttebtained by the Regression Algorithm
using Lipschitz constant& =1 andK =2. Note, that the function si has Lipschitz
constantKo=1. That is,Kg=1 is the smallest valu&, for which |sin(x) — sin(y)| <
K|x —y| forall x, y € [0, 27]. The last two columns are the results of kernel regression
estimation using,the same data samples and bandwéd#8.3 ands =0.1. We use
¢ (X, Xg) = € %_ as a kernel function.

The metricd,, is a more conservative measure of accuray than the nutritherefore,
it is not surprising that the approximation errors in Table 2 are larger. Examining the
performance of the Regression Algorithm for the choikes 1 andK =2, we see that it
is not particularly sensitive to the choicelkf The values obtained wit =1 andK =2
are quite close to each other. The dependence of the eridrisriurther demonstrated in
figure 2. We have computed the errors for samples ofrsizé0 and constari ranging
from O to 10. Note that the optimal value is somewhat smaller than the correttonad,
suggesting that it pays to somewhat underestimate the constant for the benefit of fewer
degrees of freedom. Note that for larfewe essentially overfit the data. Also the case
K =0 corresponds simply to a sample average.
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0.8

0.7

Sample average:

0.6 K=0

Data overfitted

Average error
Ind
o

I
~

0.3

0.2

Optimal K

. . . . . . . ;
1 2 3 4 5 6 7 8 9 10
Lipschitz constant K

Figure 2 Approximation error as a function &, with respect to the metrid,.

It seems that for each choice of the bandwigitthere are certain values effor which
the performance of the two algorithms is the same, or the performance of kernel regression
is slightly better § =0.5 for § =0.3; 0 =0.1 or o =0.05 for § =0.1). However, as the
noise levelo becomes smaller, we see that the Regression Algorithm outperforms kernel
regression. This is consistent with Remark 6 in Section 2: the Regression Algorithm is
more robust with respect to small noise levels.

Finally, we have investigated the dependence of the esron the sample size. The
results are reported in figure 3. For everpetween 10 and 100, we repeat the experiment
40 times, witho =.5. We take the average squared eddrover these 40 experiments,
and plot its negative logarithm. We also show the graphs aflpgnd logn?3) (shifted
vertically, so that initial points coincide).

6. Convergence to the true regression function: Consistency result

In this section, we discuss the consistency of our convex optimization regression algorithm.
Roughly speaking, we show that for the nonlinear regression médelf (X) + ¢ of

Section 1, the estimated functidhconstructed by the Regression Algorithm, converges

to the true functionf as the number of observations goes to infinityXifand Y are
bounded random variables and our constérig larger than the true constalkg. Note that

the boundedness assumption does not allow for, say, Gaussian noise and does not cover
problems such as the one considered in Example 4.1. For any continuous scalar fgnction
defined on the unit cube []%, let the norm||g||~ be defined as maXo,1¢ 19(X)|.

Theorem 2. Consider bounded random variables X with ranges in[0, 1]¢ and[0, 1],
respectively. Let Fx, y) denote their joint probability distribution function. Suppose that
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45 T T

2/3log{n)

Average error
L%

25

. . ) . . . | .
10 20 30 40 50 60 70 80 90 100
Sample size n

Figure 3 Plot of the negative logarithm of the squared ed$as a function of the sample size.

f(X)=E[Y | X = x] is a Lipschitz continuous functipmith constant I, and suppose
that the distribution of the random variable X has a density funcigr), satisfying
#(x) > B > Oforall x € [0, 1]¢ and somes > 0.

For any sample of i.i.d. outcom&X1, Y1), ..., (Xn, Yn), and a constant K> 0, let
= f be the estimated function computed by the Regression Algorithm of S&ction
Ko, then

f
K
1. f" converges to f uniformly and almost surely. That is

>
fn
lim 1f"— fllo =0, w.p.l.
2. For anye > 0, there exist positive constantg(e) and y,(¢) such that
PHIT" = fllw > €} < pa(€)e 729", vn. 6
Remarks

1. Part 2 of the theorem implies that{Pf" — f |l > €} can be made smaller than any
givens > 0, by choosingn large enough. Explicit estimates fpg(e) andy»(¢) are
readily obtained from the various inequalities established in the course of the proof.
These estimates are too conservative to be practically useful. The estimates also indicate
that the number of required samples increases exponentially with the dimehngioh
this is unavoidable, even in the absence of noise.

2. Theorem 2 can be easily extended to the case where the range of the input vériable
is some rectanglélf’zl[a'l, a'z], and the range of the output variabfeis some interval
[b1, bp]. The extension is obtained by rescaling the input and output variables.
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Proof: Let 3 be the set of all Lipschitz continuous functiors [0, 1] — [0, 1] with
constantK . We introduce the risk function

Qx,y, f)=(y— f(x)?

defined on [01]%+1 x . The estimate " obtained from Steps 1 and 2 of the Regression
Algorithm is a solution to the problem

n
minimize %ZQ(Xi,Yi, f) overfes (7)
i=1
In particular
n . n
Y QX Y fM) < > QX Y, ). ®)
i=1 i=1

Note that this is the Empirical Risk Minimization problem (see Vapnik, 1996, p. 18). Notice
also that the true regression functiéris a solution to the minimization problem

minimize /Q(x, y, f)dF(x,y) overf e,

because for any fixexl € [0, 1]¢, the minimum ofE[(Y — f(x))2| X = x] is achieved by
foo=E[Y|X=x]=fX).

Our proof of Theorem 2 is built on the concept\WE entropy(Vapnik, 1996). For any
given set of pairs

(le yl)a ey (Xn» yn) € [0’ ]']d+l

consider the set of vectors "

{(Q(Xe, y1, 1), ..., Q%n, Yo, 1)) 1 T €3} 9)
obtained byvarying‘A overy. LetN(e, 3, (X1, V1), - . ., (Xn, ¥n)) be the number of elements
(the cardinality) of a minimak-net of this set of vectors. That N(e, J, (X1, Y1), . - .,
(Xn, ¥n)) is the smallest integds, for which there exisk vectorsqy, O, . . ., gk € R" such
that for any vectoq in the set (9)]|g — djll < € forsomej =1, 2, ..., k. The following
definition of VC entropy was used by Haussler (1992). O

Definition 1  For anye > 0, the VC entropy ofs for samples of siza is defined to be
H3(67 n) = E[N(Ev (37 (le Yl)’ sy (xn, Yn))]

The following theorem was proven by Lee, Bartlett, and Williamson (1996). Itimproves
on earlier results by Pollard (Theorem 24, p. 25, Pollard (1984)) and Haussler (1992).
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Proposition 2. For everya > 0, we have

Pr{ sup

fex

- a)( / Qx, y, ) dF(x, y) — / Q. y. 1) dF(x. y))

1§n: Xi. Y. f l§n: Xi. Vi, f 2| < on3 (L n)ed
— | - Y R — Y < SN — 5248 |
ni:l Q( s Tl ) ni=1 Q( Is T ) > o = (2561n)e

Remark This bound is readily obtained from Theorem 3 of Lee, Bartlett, and Williamson
(1996), by setting = vc = /2.

The key to our analysis is to show that for the classf Lipschitz continuous functions
with Lipschitz constanK, the right-hand side of the inequality above converges to zero as
the sample siza goes to infinity. The following proposition achieves this goal by showing
that the VC entropy ofs is finite, and admits a bound that does not depend on the sample
sizen.

Proposition 3. For anye > 0 and any sequence, Y1), . .., (Xn, Yn) in [0, 1]9+2, there
holds

@

4
N(Ev Sv (Xls yl)v ) (an yn)) S (E + 1>ZT
In particular,

@2K)d

N 4
H* (e, n) < <— + 1)27-r
€

d
logH (e, n) = o((%) )

and the bound on the VC entropy does not depend on n.

and

This result is based on a theorem by Kolmogorov and Tihomirov (1961) on the VC
entropy €-covering number) of the space of Lipschitz continuous functions. We provide a
statement of this theorem and a proof of Proposition 3 in the Appendix.

For any functiong € 3, its L,-norm||g||. is defined by

1/2
lgllz = ( f g2(x) dF(x)) :

In the following proposition, we obtain a bound on the tail probability of the difference
17— fll2.
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Proposition 4. There holds

A L € —adn
P~ 12 > ) = 61755 n)e 10)
foralle < 1.
Proof: See the Appendix. O

Combining Propositions 3 and 4, we immediately obtain the following result.

Proposition 5. There holds
~ 212 Jlgd g3
Pr{||f” — f 2 > €} < (—2 —+ 1)2 20 @a1x210 | (11)
€
forall e < 1.

Our next step is to show thgtf” — f|l, — O almost surely. The following lemma
establishes that convergencejinij, norm implies the convergence jn |« for the class
3 of Lipschitz continuous functions with constat This will allow us to prove a result
similar to (11) but with| f™ — f ||, replaced by f" — f ||sc.

Lemma 1. Consider a Lipschitz continuous function[@, 1]° — % with Lipschitz con-
stant K. Suppose that for sorae- 0 there holdg|g|l. > €. Then
d 1
e2t1g2
lallz = M
In particular, for a sequence @, ..., On, . . . Of Lipschitz continuous functions with a
common Lipschitz constant,Kg, — gll> — 0implies|gn — dllec +— O.

Proof: Suppose€|g|« > €. That is, for some € [0, 1]¢, we have|g(a)| > €. Sets =
€/(2K). We have

lgl2 = / (%) dF(x)
X[ X—alloc <8

For anyx such that|x — a|l < é we havelg(x) — g(a)| < K34. It follows that|g(x)| >
€ — K§ = €/2, whenevel|x — all < §. In the integral above, we are only integrating
over elements of the unit cube that satigly— a|l < §. In the worst case, wheieis
a corner point, we are integrating over a set of voluthe Furthermore, the density is at
leastB. Therefore,

62 € 62 Ed
lgll3 = ZPr{nx — 2l < R} 2 78 GK7 > ©

and the result follows by taking square roots.
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Lemma 1 implies that

6%+1,3%

d d
2:+t1K 3

Pr{|f" — fllo > €} <P [f"— fl2>

A bound for the right-hand side is provided by Proposition 5 and part 2 of the theorem
follows immediately.

We have so far established the convergenceféf— f ||, — O in probability. To com-
plete the proof of the theorem, we need to establish almost sure convergefitéoof .
But this is a simple consequence of part 2 and the Borel-Cantelli lemma. O

The bounds established in the course of the proof provide us with a confidence interval on
the estimaté ™. Giventhe training sampleXs, Y1), ..., (Xn, Yn), we construct the estimate
fn = fn(; X1, Y, ..., Xn, Yn). Then given an arbitrary input observatidne [0, 1]¢ the
probability that the deviation of the estimated outplitX) from the true outputf (X) is
more thar, is readily bounded above. Note, that the bound depends only on the distribution
of X (throughp) and not on the conditional distribution ®¥fgiven X. Unfortunately, the
constantg/; (¢) andy,(¢) are too large for practical purposes, even for dimensiea 1.
Our simulation results from Section 5 suggest that the rate of convergerféetoff is
much better than predicted by our pessimistic bounds. It would be interesting to investigate
whether better rates and more useful upper bounds can be established.

7. Extensions

As suggested by Theorem 2, the number of samples required to learn a Lipschitz continuous
function can be huge when the input variable is multidimensional. This problem can be
potentially overcome by making additional structural assumptions. For instance, assume
that the input variable can be represented as a pair of variaties), t € 9, z € % (t could

be time, for example). Assume that the regression function has thefférma) = b(t)'z,
whereb(t) is a Lipschitz continuous vector-valued function of a single variable, with
Lipschitz constanK . Given such a model

Y= ft,2)+v

and a sequence of observatiams Z, Y1), ..., (tn, Zn, Yn) the following version of the
regression algorithm provides an estimate of the underlying regression furiction

Step 1.Choose a consta#t and solve the following constrained optimization problem in
(d-dimensional) variablebs, ..., bp:
n A/
minimize Yi — b, z)?
i-1 (12)
subjectto ||bi — bjllo < K|t —tj], i,j=21,2,...,n.



242 D. BERTSIMAS, D. GAMARNIK AND J.N. TSITSIKLIS

Step 2.Let

N t—t ~  tigg—t .
f(t,Z):( b + b. )Z.
toa—t 0 -t

forallt e [t, tj 1]

Thus, in the first step the functidn(t) is estimated at the observed values (timgs)
and then the values are extrapolated linearly for any valuésaafl X. When the value
of the parameteK is small, we can think of this model as a linear regression model in
which the regression vector is slowly varying with time. Note, that from Proposition 3,
each of the coordinate functiobg(t),i = 1,2, ..., d, has bounded VC entropy, which is
independent from the dimensiahand the sample size Therefore, the logarithm of the
VC entropy of the space of Lipschitz continuous functibrty is O(d). This is better than
Q (2%, which is known to be a lower bound for the case of general Lipschitz continuous
functions ofd variables.

A good approximation of the Lipschitz constafitis very important for the Regression
Algorithm to be successful. If the input spadécan be partitioned into, say, two parts
X1, X, with X1 U X, = X, such that within each palf a better estimatk, of the constant
K is available, such knowledge can be incorporated into the model (1) by using a tighter
constraint f; — f| < K| Xi — Xjllo, WheneveiX;, X; € &, r =1, 2.

We have observed in our simulation studies that the performance of the Regression
Algorithm is comparable to kernel regression, for moderate magnitudes of noise variance.
However, the kernel regression method has the advantage that the convergence rate, when
d = 1, of the expected errdg[(f" — f)?] = ||f" — |3 is O(n~%/3), which is the best
possible. We have not proven a similar convergence rate for our Regression Algorithm. The
best bound that can be obtained using the bounds on the tail probahifify"Pr f 2 > e}, is
O(n~?/%) and does not match the optimum. However, our simulations sugge§) that/®)
is the right rate for our method as well. It is possible that a mixture of the two approaches
produces a more desirable procedure. Such a mixture can be constructed as follows. Let
o (X1, X2), X1, X2 € X be the weight function used for kernel regression. Thus, given a

sequence of observatio(%;, Yi),i =1, 2, ..., n, kernel regression produces the estimates
f) = =19 XY
Yl B (X, Xi)

Note, that the resulting valuek(X;) can be viewed as solutions to the problem of mini-
mizing
n n R
DY X Xp(Yi = )2
j=1i=1

with respect to the variable$;. If the underlying function is known to be Lipschitz
continuous, this knowledge can be incorporated in additional constraints of the form

1 — 1 < KIXi = Xjlloo-



ESTIMATION OF TIME-VARYING PARAMETERS 243

To what extent this mixed estimation procedure is advantageous over pure kernel regression
or pure quadratic optimization is a subject for future research.

8. Conclusions

We have proposed a convex optimization approach to the nonparametric regression estima-
tion problem. A number of desirable properties were proved for this technique: average
unbiasedness, and a strong form of consistency.

We have also proposed an optimization approach for the maximum likelihood estimation
of dynamically changing parameters in statistical models. For many classical distributional
forms, the objective function in the optimization problem is convex and the constraints
are linear. These problems are therefore efficiently solvable. It would be interesting to
investigate the consistency properties of this estimation procedure. Other questions for
further investigation relate to the bounds on the expected ¢BfIf" — f|3)%/2 and to
methods for setting a value for the constdht A good choice ofK is crucial for the
approximation to be practically successful.

Appendix
We provide in this appendix the proofs of Propositions 3 and 4.

Proof of Proposition 3:  Kolmogorov and Tihomirov (1961, p. 356) proved the following
theorem.

Theorem 3. LetS; be the space of Lipschitz continuous functions defined on the unit cube
[0, 1], bounded by some constant &d having Lipschitz constant & 1. Then the size
N (e, 31) of the minimak net of3J; satisfies

N(e, So) < (2L§J + 1)23 .

Consider our se¥ of Lipschitz continuous functions with range [0, 1]. By dividing all of
these functions bK and subtracting A2K), we obtain the set of Lipschitz continuous
functions with range+1/(2K), 1/(2K)]. Applying Theorem 3, the minimal size of an
(e/K)-net in this set is no larger than

% 1 1 Kkd
2| B p1)2®” = (zl—J +1)2:-r.
K €
It follows that the minimal sizeN (¢, ) of thee-net of the sefs satisfies

2 kd
N(e, 3) < (— + 1)2?&.
€
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To complete the proof of Proposition 3, we relate the minignaét size ofy to the minimal
e-netsizeN(e, 3, (X1, Y1), . . ., %n, Yn)), Of the set

{(Q(Xl’ y19 f)’ ) Q(th yna f)a f € 3\)}
== fo)? . = Fa)? f e} (A1)

For any two functionsf,g € Sand anyi = 1,2, ..., n, we have

I(yi — Fa)Z— (Y — 9% = [T () — gx)| - 12y — F(xi) — gx)|
< 2/ f(xi) —g(xi)|.

It follows, that for anye the minimal sizeN (¢, 3, (X1, Y1), - . ., (Xn, ¥n)) Of ane-net of the
set (A.1) is at most

(4r2)e
€
This completes the proof. O
Proof of Proposition 4: The identity

[y oy = [Quy. Hdrxy + [(Foo - 00 dFex.y)

= [Quy. oy +1f - 113 (A2)

can be easily established for afiye 3, using the facts

(y— f0)?=Qx.y, f) +2(y — F00)(f — T () + (F(x) — (x))?
and

E[(Y — FOXO)(F(X) — f(X)] =0,

where the last equality is a consequenc&pyf | X] = f(X). Then,

Pr{ sup

fey
14 ~ 18
—(E;Qmm, f)—ﬁ;mxm, f))

=Pr{ sup

- a)( / Qx. v, ) dF(x, y) - / Qx. y. ) dF(x, y))

>o¢2}

A—a)f— 3

fex

1 . 18
—(—ZQ(xi,Yi, fy—=> QX Y, f))
ni:l r]izl
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n 1 n n 1 n
zPr{(l—a)llf - fI5- <H;Q(Xi,Yi,f ) — ﬁ;Q(Xi,Yi, f)) >a2}
>Pr{(1— o) f" - I3 > a?},

where the last inequality follows from (8). For all< 1, we haves? > €2/(4(1 — €/2)).
Therefore

2
Pr{(l—%)nf“— f||§>%}zPr{||f”— fllo > €} (A.3)
By settinge = ¢/2, using (A.2) and (A.3), and applying Proposition 2, we obtain

A ~ 2 —3¢3n
Pl f"— fll2> €} < 6H“<%, n)eﬁ.

This completes the proof. O
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